Radiation oncology: a century of achievements (2024)

  • Grubbé, E. H. Priority in the therapeutic use of X-rays. Radiol. 21, 156–162 (1933).

    Google Scholar

  • Glasser, O. Wilhelm Conrad Röntgen and the Early History of Roentgen Rays (Julius Springer, Berlin, 1931).

    Google Scholar

  • Coolidge, W. D. A powerful roentgen ray tube with a pure electron discharge. Phy. Rev. 2, 409–430 (1913).

    Google Scholar

  • Coliez, R. Les bases physiques de l'irradiation du cancer du col utérin par la curiethérapie et de la radiothérapie combinées. J. Radiol. 7, 201–216 (1923).

    Google Scholar

  • Failla, G. An objective method for the administration of X-rays. Acta Radiol. 4, 85–128 (1925).

    Google Scholar

  • Thoraeus, R. A study of the ionization method for measuring the intensity and absorption of roentgen rays and of the efficiency of different filters used in therapy. Acta Radiol. Suppl. XV (1932).

  • Danlos, M. & Bloch, P. Note sur le traitement du lups érythémateux par des applications de radium. Ann. Dermatol. 2, 986 (1901).

    Google Scholar

  • Lysholm, E. Apparatus for the production of a narrow beam of rays in treatment by radium at a distance. Acta Radiol. 2, 516–519 (1923).

    Google Scholar

  • Stentstrom, W. Methods of improving the external application of radium for deep therapy. Am. J. Röntgenol. 11, 176–186 (1924).

    Google Scholar

  • Failla, G. Design of well-protected radium 'pack'. Am. J. Röntgenol. 20, 128–141 (1928).

    Google Scholar

  • Berven, E. The development and organization of therapeutic radiology in Sweden. Radiology 79, 829–841 (1962).

    Google Scholar

  • Paterson, R. & Parker, H. M. A dosage system for γ-ray therapy. Br. J. Radiol. 7, 592–632 (1934).

    Google Scholar

  • Abbe, R. Technical note. Arch Röntgenol. 15, 74 (1910).

    Google Scholar

  • Heyman, J. The Radiumhemmet method of treatmnent and results in cancer of the corpus of the uterus. J. Obstetr. 43, 655 (1936).

    Google Scholar

  • Dubois, J. B. & Ash, D. in Radiation Oncology: A Century of Progress and Achievement: 1895-1995 (ed. Bernier, J.) 79–98 (ESTRO Publication, Brussels, 1995).

    Google Scholar

  • Cleaves, M. A., Radium: with a preliminary note on radium rays in the treatment of cancer. Med. Record. 64, 601–606 (1903).

    Google Scholar

  • Heineke, H. Ueber die Einwirkung der Röntgenstrahlen auf Tiere. Mènch. Med. Wochenschr. 50, 2090–2092 (1903).

    Google Scholar

  • Regaud, C. & Ferroux, R. Discordance des effects de rayons X, d'une part dans le testicile, par le peau, d'autre parts dans le fractionment de la dose. Compt. Rend. Soc. Biol. 97, 431–434 (1927).

    Google Scholar

  • Coutard, H. Principles of X-ray therapy of malignant disease. Lancet 2, 1–12 (1934).

    Google Scholar

  • Baclesse, F. Comparative study of results obtained with conventional radiotherapy (200 KV) and cobalt therapy in the treatment of cancer of the larynx. Clin. Radiol. 18, 292–300 (1967).

    CAS PubMed Google Scholar

  • Ellis, F. The relationship of biological effect to dose-time fractionation factors in radiotherapy. Curr. Top. Radiat. Res. 4, 357–397 (1965).

    Google Scholar

  • Bergonié J. & Tribondeau L. L'interprétation de quelques résultats de la radiothérapie et essai de fixation d'une technique rationnelle. C. R. Séances Acad. Sci. 143, 983–985 (1906).

    Google Scholar

  • Petry, E. Zur Kenntnis der Bedingungen der biologischen Wirkung der Rontgenstrahlen. Biochem. Zeitschr. 135, 353 (1923).

    CAS Google Scholar

  • Mottram, J. C. Factor of importance in radiosensitivity of tumours. Brit. J. Radiol. 9, 606–614 (1936).

    Google Scholar

  • Gray, L. H. et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

    CAS PubMed Google Scholar

  • Thomlinson, R. H. & Gray L. H. Br. J. Cancer 9, 539–549 (1955).

    CAS PubMed PubMed Central Google Scholar

  • Trump, J. G. et al. High energy electrons for treatment of extensive superficial malignant lesions. Am. J. Roentgenol. Radium Ther. Nucl. Med. 69, 623–629 (1953).

    CAS PubMed Google Scholar

  • Fry, D. W., Harvie, R. B., Mullet L. B. & Walkinshaw, W. Travelling wave linear accelerator for electrons. Nature 160, 351 (1947).

    CAS PubMed Google Scholar

  • Fry, D. W. et al. A traveling wave linear accelerator for 4 MeV electrons. Nature 162, 859 (1948).

    CAS PubMed Google Scholar

  • Zuppinger, A. & Poretti, G. Symposium on High Energy Electrons (Springer-Verlag, Berlin, 1965).

    Google Scholar

  • Green, D. T. & Errington R. F. Design of a cobalt 60 beam therapy unit. Brit. J. Radiol. 25, 319–323 (1952).

    Google Scholar

  • Johns, H. E., Epp, E. R., Cormack, D. V. & Fedoruk, S. O. 1000 Curie cobalt units for radiation therapy. II. Depth dose data and diaphragm design for the Saskatchewan 1000 curie cobalt unit. Br. J. Radiol. 25, 302–308 (1952).

    CAS PubMed Google Scholar

  • Spiers, F. W. & Morrison, M. T. A cobalt 60 unit with a source-skin distance of 20 cm. Br. J. Radiol. 28, 2–7 (1955).

    CAS PubMed Google Scholar

  • Lidén, K. A 10-curie Co-60 telegamma unit. Acta Radiol. 38, 139 (1952).

    PubMed Google Scholar

  • Lederman, M. & Greatorex, C. A. A Cobalt 60 telecurie unit. Brit. J. Radiol. 26, 525–532 (1953).

    CAS PubMed Google Scholar

  • Pierquin, B., Chassagne, D. & Gasiorowski, M. Présentation technique et dosimétrique de curiepuncture par fils d'or-198. J. Radiol. Electrol. Med. Nucl. 40, 690–693 (1959).

    CAS PubMed Google Scholar

  • Pierquin, B. & Dutreix, A. For a new methodology in curietherapy: the system of Paris (endo- and plesioradiotherapy with non-radioactive preparation). A preliminary note. Ann. Radiol. 9, 757–760 (1966).

    CAS PubMed Google Scholar

  • Puck, T. T. & Marcus P. I. Action of X-rays on mammalian cells. J. Exp. Med. 103, 653–666 (1956).

    CAS PubMed PubMed Central Google Scholar

  • Withers, H. R. The dose-survival relationship for irradiation of epithelial cells of mouse skin. Br. J. Radiol. 40, 187–194 (1967).

    CAS PubMed Google Scholar

  • Withers, H. R. Regeneration of intestinal mucosa after irradiation. Cancer 28, 75–81 (1971).

    CAS PubMed Google Scholar

  • Rockwell, S. C. & Kallman, R. F. Cellular radiosensitivity and tumor radiation response in the EMT6 tumor cell system. Radiat. Res. 53, 281–294 (1973).

    CAS PubMed Google Scholar

  • Powers, W. E. & Tolmach, L. J. A multicomponent X-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature 197, 710–711 (1963).

    CAS PubMed Google Scholar

  • Hewitt, H. B. & Wilson, C. W. A survival curve for mammalian leukaemia cells irradiated in vivo (implications for the treatment of mouse leukaemia by whole-body irradiation). Br. J. Cancer 13, 69–75 (1959).

    CAS PubMed PubMed Central Google Scholar

  • Suit, H. & Wette, R. Radiation dose fractionation and tumour control probability. Radiat. Res. 29, 267–281 (1966).

    CAS PubMed Google Scholar

  • Barendsen, G. W. & Broerse, J. J. Experimental radiotherapy of a rat rhabdomyosarcoma with 15 MeV neutrons and 300 kV X-rays. I. Effects of single exposures. Eur. J. Cancer 5, 373–391 (1969).

    CAS PubMed Google Scholar

  • Elkind, M. M., Sutton-Gilbert, H., Moses, W. B., Alescio, T. & Swain R. B. Radiation response of mammalian cells in culture: V. Temperature dependence of the repair of X-ray damage in surviving cells (aerobic and hypoxic). Radiat. Res. 25, 359–376 (1965).

    CAS PubMed Google Scholar

  • Withers, H. R. in Advances in Radiation Biology Vol. 5 (eds Lett, J. & Adler, H.) 241–271 (Academic Press, New York, 1975).

    Google Scholar

  • Ellis, F. et al. Beam direction in radiotherapy. Symposium. Br. J. Radiol. 16, 31 (1943).

    Google Scholar

  • Cohen, M. & Martin, S. J. Multiple field isodose charts. in Atlas of Radiation Dose Distributions. Vol. II (International Atomic Energy Agency, Vienna, 1966).

    Google Scholar

  • Lauterbeur, P. C. Progress in n.m.r. zeugmatography imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289, 483–487 (1980).

    Google Scholar

  • Mansfield, P. & Maudsley, A. A. Medical imaging by NMR. Br. J. Radiol. 50, 188–194 (1977).

    CAS PubMed Google Scholar

  • LoSasso, T. et al. The use of a multi-leaf collimator for conformal radiotherapy of carcinomas of the prostate and nasopharynx. Int. J. Radiat. Oncol. Biol. Phys. 25, 161–170 (1993).

    CAS PubMed Google Scholar

  • Burman, C. et al. Planning, delivery, and quality assurance of Intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 39, 863–873 (1997).

    CAS PubMed Google Scholar

  • Zelefsky, M. J. et al. Long term tolerance of high dose three-dimensional conformal radiotherapy in patients with localized prostate carcinoma. Cancer 85, 2460–2468 (1999).

    CAS PubMed Google Scholar

  • f*cks, Z., Leibel, S. A. & Ling, C. C. A practical guide to intensity-modulated radiation therapy. Published in cooperation with members of the staff of Memorial Sloan-Kettering Cancer Center. (Medical Physics Publishing, Wisconsin, 2003).

    Google Scholar

  • Blasberg, R. G. & Gelovani, J. Molecular-genetic imaging: a nuclear medicine based perspective. Mol. Imaging 1, 160–180 (2002).

    Google Scholar

  • Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J. & Mullani, N. A. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114, 89–98 (1975).

    CAS PubMed Google Scholar

  • Wuthrich, K., Shulman, R. G. & Peisach, J. High-resolution proton magnetic resonance spectra of sperm whale cyanometmyoglobin. Proc. Natl Acad. Sci. USA 60, 373–380 (1968).

    CAS PubMed PubMed Central Google Scholar

  • Ling, C. C. et al. Towards multi-dimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    CAS PubMed Google Scholar

  • Scheidhauer, K. et al. Qualitative [18F]FDG positron emission tomography in primary breast cancer: clinical relevance and practicability. Eur. J. Nucl. Med. 23, 618–623 (1996).

    CAS PubMed Google Scholar

  • Rigo, P. et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur. J. Nucl. Med. 23, 1641–1674 (1996).

    CAS PubMed Google Scholar

  • Kiffer, J. D. et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19, 167–177 (1998).

    CAS PubMed Google Scholar

  • Shields, A. F. et al. Monitoring tumor response to chemotherapy with [C-11]-thymidine and FDG PET. J. Nucl. Med. 37, 290–296 (1998).

    Google Scholar

  • Shields, A. F. et al. Carbon-11-thymidine and FDG to measure therapy response. J. Nucl. Med. 39, 1757–1762 (1998).

    CAS PubMed Google Scholar

  • Rasey, J. S. et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int. J. Radiat. Oncol. Biol. Phys. 36, 417–428 (1996).

    CAS PubMed Google Scholar

  • Kurhanewicz, J. et al. Prostate cancer — metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 200, 489–496 (1996).

    CAS PubMed Google Scholar

  • Kurhanewicz, J. et al. Three-dimensional H1 MR spectroscopic imaging of the in situ human prostate with high (0. 24–0.7-cm3) spatial resolution. Radiology 198, 795–805 (1996).

    CAS PubMed Google Scholar

  • Zelefsky, M. J. et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int. J. Radiat. Oncol. Biol. Phys. 53, 1111–1116 (2002).

    PubMed Google Scholar

  • Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS PubMed PubMed Central Google Scholar

  • Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    CAS PubMed Google Scholar

  • Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    CAS PubMed Google Scholar

  • Syllaba, K. & Henner, K. Contribution a l'independence de l'athetose double idiopathique et congenitale. Atteinte familiale, syndrome dystrophique, signe de reseau vasculaire conjonctival, integrite psychique. Rev. Neurol. 1, 541–562 (1926).

    Google Scholar

  • Gotoff, S. P., Amirmokri, E. & Liebner, E. J. Ataxia telangiectasia. Neoplasia, untoward response to X-irradiation, and tuberous sclerosis. Am. J. Dis. Child. 114, 617–625 (1967).

    CAS PubMed Google Scholar

  • Taylor, A. M. R. et al. Ataxia-telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 4, 427–429 (1975).

    Google Scholar

  • Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    CAS PubMed Google Scholar

  • Overgaard, J. & Horsman M. R. Modification of hypoxia induced radioresistance in tumors by the use of oxygen and sensitizers. Semin. Radiat. Oncol. 6, 10–21 (1996).

    CAS PubMed Google Scholar

  • Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism for reoxygenation. Br. J. Radiol. 52, 650–656 (1979).

    CAS PubMed Google Scholar

  • Giaccia, A. J., Siim, B. G. & Johnson, R. J. HIF-1 as a target for drug development. Nature Rev. Drug Discovery 2, 803–811 (2003).

    CAS Google Scholar

  • Folkman, J. in Harrison's Textbook of Internal Medicine 15th edn (eds Braunwald, E. et al.) 517–530 (McGraw-Hill, New York, 2001).

    Google Scholar

  • Garcia-Barros, M. et al. Tumour response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    CAS PubMed Google Scholar

  • Thames, H. D., Wither, H. R., Peters L. J. & Fletcher, G. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int. J. Radiat. Oncol. Biol. Phys. 8, 219–226 (1982).

    PubMed Google Scholar

  • Horiot, J. C. et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother. Oncol. 25, 231–241 (1992).

    CAS PubMed Google Scholar

  • Fletcher, G. H. in International Advances in Surgical Oncology Vol. 2 (ed. Murphy, G. P.) 55–98 (Alan R. Liss, New York, 1979).

    Google Scholar

  • Leksell, L. Cerebral radiosurgery. I. γ-thalanotomy in two cases of intractable pain. Acta Chir. Scand. 134, 585–595 (1968).

    CAS PubMed Google Scholar

  • Larsson, B., Lidén, K. & Sarby, B. Irradiation of small structures through intact skull. Acta Radiol. Ther. 13, 512–534 (1974).

    CAS Google Scholar

  • Pignon, J. P., Bourhis, J., Domenge, C. & Designe, L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-analysis of chemotherapy on head and neck cancer. Lancet 355, 949–955 (2000).

    CAS PubMed Google Scholar

  • Freund, L. Grundriss der gesamten Radiotherapie für praktische Årzte. (Urban und Schwarzenberg, Berlin, 1903).

    Google Scholar

  • Coutard, H. Roentgen Therapy of epitheliomas of the tonsillar region, hypopharynx, and larynx from 1920 to 1926. Am. J. Radiol. 3, 313–331 (1932).

    Google Scholar

  • Lagrutta, J., Reggiani, G., Grassi, G. & Raimondi, J. Radiosensitivity and oxygen therapy in gynecologic oncology. Minerva Radiol. 10, 294–295 (1965).

    CAS PubMed Google Scholar

  • Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. & Lee W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 12, 1239–1242 (1986).

    CAS PubMed Google Scholar

  • Stratford, I. J. et al. RSU 1069, a nitroimidazole containing an aziridine group. Bioreduction greatly increases cytotoxicity under hypoxic conditions. Biochem. Pharmacol. 35, 105–109 (1986).

    CAS PubMed Google Scholar

  • Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4, 2025–2032 (1995).

    CAS PubMed Google Scholar

  • Radiation oncology: a century of achievements (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Carlyn Walter

    Last Updated:

    Views: 5885

    Rating: 5 / 5 (50 voted)

    Reviews: 89% of readers found this page helpful

    Author information

    Name: Carlyn Walter

    Birthday: 1996-01-03

    Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

    Phone: +8501809515404

    Job: Manufacturing Technician

    Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

    Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.